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Discovery of the millisecond pulsar PSR J2043+1711 in a Fermi source
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ABSTRACT
We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi
Large Area Telescope (LAT) source with no known associations, with the Nançay Radio
Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period
of 2.38 ms, is relatively nearby (d � 2 kpc) and is in a 1.48-d orbit around a low-mass
companion, probably an He-type white dwarf. Using an ephemeris based on Arecibo, Nançay
and Westerbork timing measurements, pulsed gamma-ray emission was detected in the data
recorded by the Fermi LAT. The gamma-ray light curve and spectral properties are typical of
other gamma-ray millisecond pulsars seen with Fermi. X-ray observations of the pulsar with
Suzaku and the Swift X-ray Telescope yielded no detection. At 1.4 GHz, we observe strong
flux density variations because of interstellar diffractive scintillation; however, a sharp peak
can be observed at this frequency during bright scintillation states. At 327 MHz, the pulsar
is detected with a much higher signal-to-noise ratio and its flux density is far more steady.
However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse
profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of
2 μs. This and the expected stability of this system have made PSR J2043+1711 one of the first
new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays.
It has also allowed a significant measurement of relativistic delays in the times of arrival of
the pulses due to the curvature of space–time near the companion, but not yet with enough
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precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for
the pulsar between 1.7 and 2.0 M� can be derived if a standard millisecond pulsar formation
model is assumed. In this paper, we also present a comprehensive summary of pulsar searches
in Fermi LAT sources with the Nançay Radio Telescope to date.

Key words: pulsars: general – pulsars: individual: PSR J2043+1711 – gamma-rays: general.

1 IN T RO D U C T I O N

Searches for radio pulsars coincident with Fermi Large Area Tele-
scope (LAT) gamma-ray sources with no known associations have
been remarkably successful, with the discovery of more than 30 mil-
lisecond pulsars (MSPs) up to now (e.g. Cognard et al. 2011; Keith
et al. 2011; Ransom et al. 2011). In addition, pulsed gamma-ray
emission has been observed for about 20 previously known radio
MSPs (Abdo et al. 2009, 2010b; Freire et al. 2011a; Guillemot et al.
2012). Finally, the LAT has observed gamma-ray emission from
globular clusters with properties that are consistent with collective
emission from populations of MSPs (Abdo et al. 2010d; Kong, Hui
& Cheng 2010). MSPs are therefore an important class of gamma-
ray sources.

MSPs are rapidly rotating neutron stars, characterized by small
rotational periods (P � 30 ms) and period derivatives (Ṗ � 10−17).
These pulsars are thought to be ‘recycled’, spun-up to millisecond
periods by the accretion of matter and thus transfer of angular mo-
mentum from a binary companion (Bisnovatyi-Kogan & Komberg
1974; Alpar et al. 1982). More than 80 per cent of them are in
binary systems, which makes searches for MSPs less sensitive than
for normal pulsars. In addition, the MSPs discovered in Fermi LAT
unassociated sources are widely distributed in Galactic latitude,
whereas most radio pulsar surveys have concentrated on the Galac-
tic plane. With its unprecedented sensitivity and localization accu-
racy (see Atwood et al. 2009), the LAT directs radio telescopes to
high-latitude unassociated sources that could be unknown pulsars,
missed by previous radio surveys. Moreover, positional uncertain-
ties in the Fermi LAT Second Source Catalog (2FGL; Abdo et al.
2012) are comparable to typical radio beam sizes, making radio
pulsation searches very efficient.

Despite the numerous discoveries, 30 per cent of the sources in
the 2FGL catalogue remain unassociated and could potentially hide
unknown gamma-ray pulsars. Pulsars seen by the Fermi LAT are
characterized by gamma-ray spectra with sharp cut-offs at a few
GeV and low flux variability (Abdo et al. 2009, 2010c). Observa-
tions of Fermi LAT unassociated sources from the First Source
Catalog (1FGL; Abdo et al. 2010a) with curved spectra at the
Nançay Radio Telescope (NRT) have previously yielded the dis-
covery of two radio and gamma-ray MSPs, PSR J2017+0603 and
PSR J2302+4442 (Cognard et al. 2011). In this paper, we describe
a third NRT discovery, PSR J2043+1711, an MSP in a binary sys-
tem located at the position of a Fermi LAT source with pulsar-like
properties and no previously known, plausible associations.

This paper is organized as follows. In Sections 2.1 and 2.2, we
describe the radio observations of PSR J2043+1711. In Section 2.3,
we discuss the timing analysis of this MSP using the radio and the
LAT data. In Sections 2.4 and 2.5, we describe the analysis of Fermi
LAT data for the MSP, observed to emit pulsed gamma-rays, and
the results of Suzaku observations yielding no detection of X-ray
emission from the pulsar. In Section 3, we discuss some of the sci-
entific results, including the modelling of the observed radio and
gamma-ray light curves of PSR J2043+1711 in the context of the-
oretical models of emission in the outer magnetosphere of pulsars,

and the detection of the Shapiro delay induced by the companion
star at superior conjunction, which allowed us to place constraints
on the neutron star mass (Section 3.2), and the detection of the
proper motion and consequent limits on the distance to the pulsar
(Section 3.3). Furthermore, in Section 3.3 we use the measured
gamma-ray energy density to derive tighter upper limits for the dis-
tance. Once a precise distance is measured, these can be used to
derive a lower limit for the moment of inertia of the star. We present
a final summary and discuss some scientific prospects in Section 4.

2 O B S E RVAT I O N S A N D DATA A NA LY S I S

2.1 Discovery observations

The Fermi LAT catalogue source 2FGL J2043.2+1711 was already
listed in the 1FGL as 1FGL J2043.2+1709. It has no known coun-
terpart, and has spectral and variability properties that made it a
plausible gamma-ray pulsar, with a curvature index of 12.0 and a
variability index of 12.2 in the 1FGL catalogue (see Abdo et al.
2010a, for definitions of the curvature and variability indices). A
curvature index larger than 11.34 indicates that the source has a
spectrum which departs from a pure power law at the 99 per cent
confidence level, while a variability index larger than 23.21 implies
that the source shows evidence of flux variability at the 99 per cent
confidence level. With its lack of known associations, its gamma-
ray properties that are reminiscent of those of known pulsars and
high Galactic latitude (b = −15.◦29), 1FGL J2043.2+1709 satisfied
all the criteria used for selecting the sources eligible for the origi-
nal search for pulsars in Fermi LAT unassociated sources at Nançay
that led to the discovery of PSR J2017+0603 and PSR J2302+4442
(Cognard et al. 2011), except for the spatial localization: the semi-
major axis of the 1FGL source 95 per cent confidence ellipse (θ95)
was larger than the conservative cut of 3 arcmin used for the later
search in order for sources to be well covered by the Nançay beam,
which has a width at half-maximum of 4 arcmin in right ascension
and 22 arcmin in declination. With additional data, the source local-
ization improved (θ95 = 2.9 arcmin in the 2FGL catalogue), making
2FGL J2043.2+1711 an excellent candidate source for radio pulsar
searches with the NRT.1

A first 1-h observation of the source was made on 2009 Novem-
ber 21 at the NRT, using the modified Berkeley-Orléans-Nançay
instrumentation (Cognard & Theureau 2006) at 1.4 GHz, with a
512 × 0.25 MHz incoherent filter bank sampled every 32 μs. The
data were dedispersed in ∼2000 dispersion measure (DM) val-
ues, up to 1244 pc cm−3, and processed using acceleration and
single-pulse search techniques as provided by the PRESTO package
(Ransom, Eikenberry & Middleditch 2002). No pulsations were
observed in this initial observation. Similarly, the analysis of a sec-
ond observation taken on 2009 December 2 yielded no detection.

1 In addition to the successful search strategy just described, a number of
other NRT observations of other Fermi LAT sources are documented in
Appendix A.
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Figure 1. Multiwavelength light curves of PSR J2043+1711. The bottom
panel shows radio profiles recorded at the Arecibo telescope at 345 MHz
(40-min integration), at the WSRT at 345 MHz (3.8-h integration) and at
the Arecibo telescope at 1.4 GHz (1-h integration). The third panel shows
a 40-bin gamma-ray profile obtained by selecting events recorded by the
Fermi LAT within 5◦ from the pulsar and with energies above 0.1 GeV,
and weighting each event by its probability of originating from the pulsar.
The fitting functions are shown as dashed lines in the first cycle. The top
two panels show non-weighted Fermi LAT light curves for events recorded
within 0.◦8 of the pulsar, with energies between 0.1 and 1 GeV, and above
1 GeV, respectively. No gamma-ray features significantly narrower than the
bin width used here were observed. Horizontal dashed lines indicate gamma-
ray background levels. Two rotations are shown for clarity.

Nevertheless, a 19σ candidate with a rotational period of 2.379 ms
and a DM of 20.7 pc cm−3 was observed in the third observation,
taken on 2009 December 12. Seven subsequent observations of
the Fermi LAT source at 1.4 GHz with the NRT yielded no rede-
tection, casting doubts on the presence of a pulsar in this Fermi
LAT source. The 2.379-ms candidate was finally confirmed with
observations made at the Green Bank Telescope at 350 MHz with
the Green Bank Ultimate Pulsar Processing Instrument backend2

during a survey of Fermi LAT unassociated sources (see Hessels
et al. 2011), and at the Arecibo telescope at 327 MHz with the
Wide-band Arecibo Pulsar Processors (WAPPs; Dowd, Sisk &
Hagen 2000). Substantial accelerations of the rotational period
across the confirmation observations were measured, indicating that
the pulsar is in a binary system.

2.2 Arecibo observations

Radio light curves of PSR J2043+1711 recorded with the Arecibo
telescope are shown in Fig. 1. At 1.4 GHz, the pulsar is observed

2 https://safe.nrao.edu/wiki/bin/view/CICADA/NGNPP

to exhibit dramatic radio flux variations, explaining the several un-
successful attempts to confirm the pulsar at Nançay following the
discovery. Even with Arecibo, it can be a difficult object: during one
30-min observation the pulsar was not visible in one of the WAPPs,
centred at 1.46 GHz and with 50 MHz of bandwidth. Assuming a
system temperature of Tsys = 25 K, a gain of G = 10 K Jy−1, a pulse
width of 6.25 per cent (eight bins above average out of a total of
128) and a signal-to-noise ratio (S/N) smaller than 3, this corre-
sponds to an instantaneous upper limit on the radio flux density of
5.1 μJy. However, on most occasions the pulsar is detectable with
Arecibo and the high S/N light curve was recorded during a bright
scintillation state. The 1.4-GHz light curve is complex, with several
pulsed components. A total of four useful observations of the pul-
sar at 1.4 GHz have been carried out with Arecibo, between 2010
November 20 and 2011 August 24. The average radio flux density
for these observations was of the order of 10 μJy.

At 327 MHz, the flux density is far more steady, and for that rea-
son we carried out the bulk of the Arecibo timing at this frequency.
The pulsar was observed 64 times between 2010 July 17 and 2011
August 25 with average integrations of 35 min using the 327-MHz
receiver (G = 11 K Jy−1, Tsys = 113 K). For most observations, we
use the four WAPP spectrometers in parallel. Each WAPP makes a
three-level digitization of the analogue voltages over a 12.5-MHz
band for both linear polarizations, autocorrelating these for a total
of 512 lags. The data are then integrated for ts = 64 μs and the or-
thogonal polarizations added in quadrature are written to disk. Their
bands are centred at 308.25, 320.75, 333.25 and 345.75 MHz, and
together they cover the full 50-MHz band provided by the receiver.
For all Arecibo observations, the lags were Fourier transformed to
generate power spectra. These were dedispersed at the nominal DM
of the pulsar and folded modulo its spin period using the PRESTO pul-
sar software package, generating pulse profiles that are then stored
for later analysis. 10 Arecibo observations at 345 MHz were aver-
aged to derive a radio flux density of S345 = 1.2 mJy with a standard
deviation of 0.2 mJy, assuming a pulse width of 6.25 per cent.

Note that this pulse width is overestimated because of instrumen-
tal limitations: with the WAPPs, the pulses are seen with an effective
width at half-maximum dt given by the sum in quadrature of the
intrinsic width at half-maximum dti, the sampling time dts and the
dispersive smearing dtd. At an observing frequency ν = 0.345 GHz,
we have dti ∼ 75–80 μs (see below). The sampling time is 64 μs,
and with a bandwidth of 12.5 MHz for each WAPP, and 512 spec-
tral channels across that bandwidth, the dispersive smearing dtd (see
e.g. equation 5.2 of Lorimer & Kramer 2005) is calculated to be
∼120 μs. Therefore, we have an effective width of ∼156 μs, twice
as much as the intrinsic pulse width. The intrinsic pulse profile was
determined using the Pulsar Machine II backend (Karuppusamy,
Stappers & van Straten 2008) at the Westerbork Synthesis Radio
Telescope (WSRT), in the Netherlands, which is capable of coherent
dedispersion for a total bandwidth of 80 MHz centred at 345 MHz
(see Fig. 1).

2.3 Timing analysis

The best detections of the pulsar at each instrument and frequency
were used to derive ‘standard’ pulse profiles. For the dominant
Arecibo 327 MHz data set, we made one time of arrival (TOA)
per WAPP for every 500 s of observations on average, by cross-
correlating the pulse profiles with the standard profiles in the
Fourier domain (Taylor 1992). We also extracted 32 TOAs from
the 1.4 GHz Arecibo observations. This resulted in a total of 1029
Arecibo TOAs. In addition, 18 NRT TOAs have been recorded at

C© 2012 The Authors, MNRAS 422, 1294–1305
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at N
A

SA
 G

oddard Space Flight C
tr on July 14, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Discovery of PSR J2043+1711 at Nançay 1297

1.4 and 1.6 GHz from 2010 August 16 to 2011 August 15 using the
procedure and instrumentation described in Cognard et al. (2011).
Six TOAs were recorded at 345 MHz with the WSRT between 2011
March 18 and 2011 August 20. Finally, gamma-ray pulsations from
PSR J2043+1711 were detected in the Fermi LAT data after the first
months of radio timing following the discovery (see Section 2.4),
which allowed us to measure TOAs using the maximum-likelihood
techniques described in Ray et al. (2011) and recover phase coher-
ence across the entire Fermi LAT data set. A total of 13 gamma-ray
TOAs with average uncertainty 25.3 μs and corresponding to at least
3σ detections were extracted between 2008 September 12 and 2011
June 10 by selecting photons with energies greater than 0.5 GeV
and with reconstructed directions found within 1◦ of the pulsar.

We carried out subsequent TOA analyses using the TEMPO2 soft-
ware package (Hobbs, Edwards & Manchester 2006). For the con-
version of Terrestrial Time TOAs to Coordinated Barycentric Time
(TCB), we used the DE/LE 421 Solar system ephemeris (Folkner,
Williams & Boggs 2009). The differences between observed and
predicted barycentric TOAs (the timing residuals) were weighted
in the fit according to the estimated uncertainty of each TOA. The
resulting timing parameters and their 1σ uncertainties are presented
in Table 1. The orbit of PSR J2043+1711 has very low eccentricity,
therefore we used the ‘ELL1H’ orbital model (Lange et al. 2001;
Freire & Wex 2010) to model it. This yields Keplerian (semimajor
axis of the pulsar orbit projected along the line of sight, x, orbital
period Pb, epoch of ascending node T0, eccentricity e and longitude
of periastron, ω) and post-Keplerian (orthometric amplitude h3 and
orthometric ratio ς ) parameters that are weakly correlated with each
other.

This ephemeris describes the TOAs well, with a reduced χ2 of
2.1 for 1044 degrees of freedom. In order to estimate the timing
parameters with realistic uncertainties, we adjusted the uncertainty
estimates of each individual timing data set using EFAC parameters
so that χ2/nfree is equal to 1 in every case. The uncertainties quoted
in Table 1 were derived in this fit by TEMPO2, except where stated
otherwise. The 1029 Arecibo TOAs have a post-fit rms uncertainty
of 2.13 μs, despite the aforementioned smearing caused by the in-
strumentation used to date. For this reason, PSR J2043+1711 has
been added to the International Pulsar Timing Array (Hobbs et al.
2010).

There is clearly scope for further improvement in the timing
precision of this object, given the fact that the pulse width measured
with the WAPPs is twice as wide as the intrinsic pulse width. This
implies that, with a broad-band coherent dedispersion instrument
working at Arecibo, the measured peak flux density should be about
twice as large and the rise time about half as long, implying about
four times the current timing precision.

Note that the DM value and its uncertainty were measured inde-
pendently from the analysis described here. To measure the DM, we
built a data set of 308.25, 320.75, 333.25 and 345.75 MHz Arecibo
TOAs by cross-correlating the individual pulse profiles with a single
standard profile, to prevent any phase shifts caused by the usage of
different template profiles. This data set was then fitted for the DM,
yielding the best-fitting value and corresponding uncertainty listed
in Table 1.

Because the radio timing data cover only slightly more than a year,
no proper motion could be measured with these data alone. How-
ever, with the gamma-ray TOAs covering approximately 3 years,
we could measure a significant proper motion (see Table 1). It is
clear that the proper motion measurement depends strongly on the
gamma-ray timing. We therefore checked the proper motion values
and their associated uncertainties by studying the influence of the

LAT timing on the measurement. We first repeated the analysis de-
scribed above using different numbers of gamma-ray TOAs, from
5 to 25 with a step of 1. This yielded average proper motion values
that are consistent with those listed in Table 1, within standard de-
viations on μαcos (δ) and μδ of 0.1 and 0.4 mas yr−1, respectively.
Also, we made 1000 realizations of a Monte Carlo simulation in
which gamma-ray TOAs were generated based on the timing solu-
tion given in Table 1, and were then perturbed so that the residuals
have the same rms as those of the actual gamma-ray TOAs (∼30 μs).
The uncertainties were finally shuffled from the actual gamma-ray
TOAs. Again, this yielded average μαcos (δ) and μδ values that are
compatible with the values reported here, within standard devia-
tions of 0.6 and 0.7 mas yr−1, respectively. Combining the standard
deviations obtained from these two studies, we estimate that the
gamma-ray TOAs introduce systematic uncertainties on μαcos (δ)
and μδ of approximately 1 mas yr−1.

2.4 Gamma-ray analysis

The analysis of the LAT data was done using the Fermi Science
Tools3 (STs) v9r23p1. We selected events recorded between 2008
August 4 and 2011 July 21, with reconstructed directions within a
20◦ × 20◦ region centred on the pulsar position, energies between
0.1 and 100 GeV, and zenith angles below 100◦. We further selected
‘Source’ class events of the P7_V6 instrument response functions
(IRFs), and rejected times when the rocking angle of the telescope
exceeded 52◦ and when the Earth’s limb infringed upon the region
of interest (ROI). The gamma-ray events were phase folded using
the Fermi plug-in distributed with TEMPO2 (Ray et al. 2011) and the
ephemeris given in Table 1.

To measure the spectral properties of the pulsar, we fitted sources
in the ROI using a binned maximum-likelihood method, using the
PYLIKELIHOOD module provided with the STs. The spectral parame-
ters of the 54 2FGL catalogue sources within 20◦ of the pulsar were
included in the model. PSR J2043+1711 and the eight other pulsars
in the field of view were modelled as exponentially cut-off power
laws of the form

dN

dE
= N0

(
E

1 GeV

)−�

exp

[
−

(
E

Ec

)]
. (1)

In this equation, N0 denotes a normalization factor, � is the
photon index and Ec is the cut-off energy of the spectrum. The
extragalactic diffuse emission and the residual instrument back-
ground were modelled jointly using the iso_p7v6source tem-
plate, while the Galactic diffuse emission was modelled using the
gal_2yearp7v6_v0 mapcube. The spectral parameters of the 12
sources within 10◦ of PSR J2043+1711 were left free in the fit,
as were the normalization factors for the diffuse components. The
nearest source in the catalogue, 2FGL J2031.0+1938, is located
∼3.◦7 away and its gamma-ray energy flux above 0.1 GeV is about
three times smaller than that of PSR J2043+1711. The measure-
ment of spectral properties for the latter object is therefore weakly
affected by the neighbouring sources. The gamma-ray spectral en-
ergy distribution of PSR J2043+1711 for an exponentially cut-off
power law is shown in Fig. 2. The best-fitting spectral parameters,
as well as the integrated photon and energy fluxes above 0.1 GeV,
are listed in Table 1. With the measured energy flux Fγ , we derived
the gamma-ray luminosity Lγ = 4πfFγ d2 and efficiency of con-
version of spin-down power into gamma-ray emission, η = Lγ /Ė,

3 http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/overview.html
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Table 1. Measured and derived parameters for PSR J2043+1711. Numbers in parentheses are the nominal 1σ TEMPO2 uncertain-
ties in the least-significant digits quoted. The distance was estimated using the NE2001 model of Galactic free electron density
(Cordes & Lazio 2002). We assumed an uncertainty on this distance estimate of 20 per cent. Using this distance estimate and the
measured proper motion, μT, we calculated the period derivative corrected for the Shklovskii effect (Shklovskii 1970), Ṗcorr, and
used that value to derive Ė, Bs and BLC. Note that Ė, Bs, BLC and η were calculated assuming a moment of inertia I of 1045 g cm2.
For proper motion parameters and for the total proper motion, the first quoted uncertainties are the 1σ statistical uncertainties
from TEMPO2 and the second ones are systematic (see Section 2.3 for details on the calculation of the systematic uncertainties).
For gamma-ray parameters, the first quoted uncertainties are statistical and the second are systematic, and correspond to the
differences observed when doing the spectral analyses with the P6_V3 IRFs and associated diffuse models.

RA (J2000) 20h43m20.s883 09(5)
Dec. (J2000) +17◦11′28.′′948(1)
Rotational period, P (ms) 2.379 878 960 26(4)
Apparent period derivative, Ṗ (10−21) 5.24(2)
Proper motion in right ascension, μαcos (δ) (mas yr−1) −7 ± 1 ± 1
Proper motion in declination, μδ (mas yr−1) −11 ± 2 ± 1
Epoch of ephemeris, T0 (MJD) 55400.00019
Dispersion measure, DM (cm−3 pc) 20.709 87(3)
Orbital period, Pb (d) 1.482 290 809(2)
Projected semimajor axis, x (lt s) 1.623 9614(1)
Epoch of ascending node, Tasc (MJD) 55253.8038503(6)
η ≡ esin ω (10−6) −2.1(1)
κ ≡ ecos ω (10−6) −2.6(1)
h3 (μs) 0.63(7)
ς (μs) 0.87(5)
Span of timing data (MJD) 54729.1–55798.2
Number of TOAs 1066
rms of TOA residuals (μs) 2.1
Solar system ephemeris model DE421
Units TCB
Flux density at 327 MHz, S327 (mJy) 1.2 ± 0.2

Derived parameters

Orbital eccentricity, e (10−6) 3.4(1)
Mass function, f (M�) 0.002 092 87(8)
Minimum companion mass, mc (M�) ≥0.173
Galactic longitude, l (◦) 61.92
Galactic latitude, b (◦) −15.31
Distance inferred from the NE2001 model, d (kpc) 1.8 ± 0.4
Total proper motion, μT (mas yr−1) 13 ± 2 ± 1
Shklovskii-corrected period derivative, Ṗcorr (10−21) 3.6 ± 0.5
Spin-down luminosity, Ė (1034 erg s−1) 1.1 ± 0.2
Surface magnetic field strength, Bs (107 G) 9.3 ± 0.7
Magnetic field strength at the light cylinder, BLC (104 G) 6.3 ± 0.5

Light-curve parameters

First peak position, �1 0.17 ± 0.01
First peak full width at half-maximum, FWHM1 0.10 ± 0.02
Second peak position, �2 0.58 ± 0.01
Second peak full width at half-maximum, FWHM2 0.10 ± 0.03
Radio-to-gamma-ray lag, δ 0.18 ± 0.01
Gamma-ray peak separation, � 0.41 ± 0.02

Gamma-ray spectral parameters

Spectral index, � 1.4 ± 0.1 ± 0.4
Cut-off energy, Ec (GeV) 3.2 ± 0.6 ± 1.0
Photon flux (>0.1 GeV) (10−8 cm−2 s−1) 2.8 ± 0.3 ± 0.9
Energy flux (>0.1 GeV), Fγ (10−11 erg cm−2 s−1) 2.8 ± 0.2 ± 0.3
Luminosity, Lγ /f (1034 erg s−1) (1.0 ± 0.1 ± 0.1) × (d/1.8 kpc)2

Efficiency, η/f (1.0 ± 0.1 ± 0.1) × (d/1.8 kpc)2

assuming a geometrical correction factor f (see Watters et al. 2009,
for the definition) of 1, which is typical under outer magnetospheric
gamma-ray emission models (see e.g. Venter, Harding & Guillemot
2009). The best-fitting spectral parameters for the sources within
10◦ were compatible within statistical and systematic uncertainties

with the values published in the 2FGL catalogue, with the exception
of 2FGL J2035.4+1058, located 6.◦5 away from PSR J2043+1711,
for which our flux estimate is larger than the 2FGL flux by four
standard deviations. The 2FGL source J2035.4+1058, which is as-
sociated with the blazar PKS 2032+107, is nevertheless flagged in
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Figure 2. Phase-averaged gamma-ray energy spectrum for PSR J2043+
1711. The black line shows the best-fitting model obtained by fitting the
Fermi LAT data with a simple exponentially cut-off power-law form (see
Section 2.4 for details), while dashed error lines indicate 1σ errors. Data
points are derived from likelihood fits of individual, variable-width energy
bands defined by the requirement that the pulsar be detected with a test
statistic (see Mattox et al. 1996) of at least 50. In these bands, the pulsar is
modelled with a simple power-law form. An upper limit was calculated for
the last energy band as the pulsar was not detected with enough significance
in that band.

the catalogue as being variable. Since the time interval considered
in our analysis was longer than in the 2FGL catalogue, it is not
surprising that the flux we measured differs from the 2FGL one. We
checked the best-fitting spectral parameters for PSR J2043+1711
by fitting the data with the POINTLIKE likelihood analysis tool (Kerr
2011b), and found results that are consistent with those listed in
Table 1 within uncertainties.

Using the full spectral model obtained with the likelihood
analysis and the tool GTSRCPROB, we calculated the probabili-
ties that each gamma-ray event originates from the pulsar. The
probability-weighted gamma-ray light curve of PSR J2043+1711
above 0.1 GeV and for events found within 5◦ of the pulsar is shown
in Fig. 1. The weighted H-test parameter (Kerr 2011a) is 433.5,
corresponding to a pulsation significance of 18.5σ . The upper two
phase histograms in Fig. 1 show gamma-ray light curves for events
found within 0.◦8 of the pulsar position, in different energy bands.
The background levels in these light curves have been calculated
by summing the probabilities that events have not been produced
by the MSP, as described in Cognard et al. (2011) and Guillemot
et al. (2012). We verified that the weighted light curve did not show
indications for emission features significantly narrower than the bin
width used, by analysing the same light curve with five and 10 times
the number of bins, finding no statistically significant component
other than those seen in Fig. 1.

We measured the phase �i and full width at half-maximum
(FWHMi) of each gamma-ray component by fitting the two peaks in
the weighted light curve with Lorentzian functions. The best-fitting
parameters are listed in Table 1, along with the radio-to-gamma-ray
lag, δ = �1 − �r, where �r = 0.99 is the phase of the maximum
of the 345 MHz radio profile, and the separation between the two
gamma-ray peaks, � = �2 − �1.

The gamma-ray light-curve shape of PSR J2043+1711 is similar
to those of other gamma-ray MSPs (see e.g. Abdo et al. 2009;
Cognard et al. 2011), suggesting that the gamma-ray emission is
produced at high altitudes in their magnetospheres (Venter et al.
2009). Likewise, the spectral properties of the MSP are similar to

those of other gamma-ray pulsars (Abdo et al. 2010c). The large
efficiency η ∼ 100 per cent indicates that the distance is very likely
overestimated by the NE2001 model. In Section 3, we, however,
discuss the possibility to use this large efficiency value to constrain
the moment of inertia of the star, if the actual pulsar distance is
close to the DM distance.

2.5 X-ray analysis

On 2010 May 3, the Fermi LAT unassociated source 1FGL
J2043.2+1709 was observed by the Suzaku X-ray observatory for
18 ks, as part of an unassociated sources observation campaign. A
description of this campaign and the data reduction, as well as an
X-ray image of the field of view around 1FGL J2043.2+1709 as
seen with Suzaku, can be found in Takahashi et al. (2012).

No significant X-ray source can be seen at the position of PSR
J2043+1711. Assuming a power-law model with a photon index
of 2, the X-ray upper limit for PSR J2043+1711 between 0.5 and
8 keV is calculated to be ∼4.7 × 10−14 erg cm−2 s−1 (90 per cent
confidence).

We also checked the available Swift X-ray Telescope observations
of PSR J2043+1711, and found two, totalling ∼10.5 ks of data. No
X-ray sources were detected within 2 arcmin of the pulsar position,
thus confirming the Suzaku results.

3 D I SCUSSI ON

3.1 Light curve modelling

We have fitted the radio and gamma-ray light curves of PSR
J2043+1711 to geometric simulations (assuming the vacuum re-
tarded dipole magnetic field geometry of Deutsch 1955) using a
maximum-likelihood technique. The gamma-ray light curves were
fitted with the two-pole caustic (TPC; Dyks & Rudak 2003) and
outer gap (OG; Cheng et al. 1986) models. For our purposes, the
TPC model is taken to be a geometric realization of the slot-gap
model (Muslimov & Harding 2004). The radio light curves were
fitted with a hollow-cone beam, core beam and cone plus core beam
models following Story, Gonthier & Harding (2007).

The gamma-ray light curve (30 bins per rotation) used for the
fits was constructed using all events from the data described in
Section 2.4 with reconstructed directions within 0.◦8 of the pulsar
radio position. Additionally, we used either the 1.4 GHz or 345 MHz
radio profile (also in 30 bins) but report only results from fits with
the former as the latter profile is known to be too wide; however,
fits using the 345-MHz profile were used in estimating systematic
biases in our procedure as discussed below.

We have used simulations with the same parameters (P = 2.5 ms)
as those in Cognard et al. (2011) except that we have a resolution
of 2.5 per cent of the polar cap opening angle (θPC ∼ √

2πRNS/P c)
in gap width. We scanned over the parameter phase space in order
to find the best fit for each model as given in Table 2.

To account for the fact that these models are relatively simple
and the likelihood surfaces can be steep around maxima, implying
unrealistically small uncertainties, we have rescaled the likelihood
differences by nfree/ {2[− ln(Lmax)]}, where Lmax is the maximum-
likelihood value and nfree is the degrees of freedom for the given fit.
Assuming the log-likelihood differences follow a χ2 distribution,
this results in the best fit corresponding to a reduced χ2 = 1. The
best-fitting uncertainties given in Table 2 are 68 per cent confidence
level. The two widths reported are for the accelerating (wacc) and
emitting (wem) gaps; these are the same for the TPC model.
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Table 2. Best-fitting parameters from light-curve modelling (see Section 3.1). For the gap width parameters, the
maximum size is 0.10. Values of 0.0 are unphysical and should be taken to mean that the best-fitting width is less than
our resolution of 0.025. For the OG models, the width of the emitting gap is constrained to be no more than one-half
the accelerating gap size.

Gamma-ray model Radio model α (◦) ζ (◦) wacc(θPC) wem(θPC) − ln(L) nfree f 

TPC Hollow cone 52+5
−6 76+4

−3 0.10+0.025
−0.075 – 142.2 54 0.81+0.06

−0.09

Core only 49+12
−7 78+2

−7 0.10+0
−0.05 – 138.3 54 0.78+0.17

−0.07

Core + cone 50+5
−8 77+3

−3 0.10+0
−0.05 – 136.3 53 0.78+0.09

−0.07

OG Hollow cone 56+2
−14 79 ± 1 0.0+0.075

−0 0.0+0.025
−0 185.3 53 0.92+0.01

−0.26

Core only 45+9
−3 78+2

−1 0.0+0.025
−0 0.0+0.025

−0 180.6 53 0.79+0.13
−0.05

Core + cone 45+12
−3 78+2

−1 0.0+0.025
−0 0.0+0.025

−0 179.1 52 0.79+0.15
−0.05

Our models are relatively simple and, in the case of the radio
profiles, do not contain as many components as are implied by
the data. Additionally, the geometry used for the magnetic field
cannot be correct as the magnetosphere will, to some extent, be
filled with charges (Goldreich & Julian 1969) which will distort the
gap geometry. Therefore, we have attempted to estimate systematic
biases in the best-fitting geometries reported in Table 2. To do this,
we refit the data while varying the radio uncertainty by a factor of
2, varying the gamma-ray background estimate by 5 per cent, using
the 1.4 GHz radio light curve in 60 bins, and performing fits with
gamma-ray light curves corresponding to the energy ranges 0.1–1
and ≥1 GeV. None of these changes strongly affected the gap width
parameters. Changes in geometry were typically �8◦; however, the
OG best-fitting geometry changed by 25◦–40◦ in one parameter
for both the core and cone beam fits when the radio uncertainty
was doubled and when fitting only the 0.1–1 GeV gamma-ray light
curve.

The data and best-fitting model light curves are shown in Fig. 3
using the 1.4 GHz radio profile and the hollow-cone beam model.
While the likelihood formally favours the TPC model, both gamma-
ray models reproduce the qualitative features of the observed
gamma-ray light curve (gamma-ray peak separation and bridge
emission) well, and the radio model is not optimal. The OG model
therefore cannot be ruled out. Fits with both the TPC and OG model
do find solutions with ζ near 80◦ which is to be expected if the spin
and orbital axes have (nearly) aligned over time.

It should be noted that the likelihood favours the core beam
model in all cases. Nevertheless, under these fits we obtain impact

Figure 3. Data and best-fitting light curves using the gamma-ray data de-
scribed in Section 3.1 (top) and the 1.4 GHz radio profile (bottom). Models
corresponding to the TPC fit are shown as dot–dashed lines (solid pink lines
online) and for the OG fit as dashed lines (solid green lines online).

parameters (β ≡ ζ − α) of the order of 20◦ which would imply
a very faint radio flux for a beam falling off as a Gaussian away
from the magnetic axis. Such solutions thus seem less likely. Note,
however, that no polarimetric data exist for this MSP to conclusively
confirm or rule out the presence of a core beam.

From our models, we have estimated f  (described in Section 2.4)
for each model and provide estimated uncertainties (see Table 2). In
all cases, the predicted f  is less than 1, although relatively close.
This leads to corrected gamma-ray efficiencies of η = (0.8 ± 0.1 ±
0.1) × (d/1.8 kpc)2 for the TPC model and η = (

0.9+0.1+0.1
−0.3−0.3

) ×
(d/1.8 kpc)2 for the OG model.

3.2 Component masses

From the projected semimajor axis x and the orbital period Pb, we
calculate the mass function f (mp, mc) = (mc sin i)3/(mp + mc)2 =
(4π2c3x3)/(G M�P 2

b ) ∼ 2.1 × 10−3 M�, where mp, mc and i are
the pulsar mass, the companion mass and the orbital inclination.
Assuming a pulsar mass mp of 1.4 M�, we derive a minimum com-
panion mass of mc > 0.173 M�. The mass of the companion could
be significantly higher for much lower orbital inclinations. How-
ever, that possibility can be excluded by our detection of relativistic
time delays in the TOAs caused by space–time curvature in the
vicinity of the companion star, commonly known as the Shapiro
delay (Shapiro 1964); these are displayed in Fig. 4. This detection
has high significance: the orthometric amplitude (h3) measurement
is nine times larger than the 1σ uncertainty. This detection implies
that the orbital inclination must be high. The constraints on mc,
mp and sin i introduced by our detection of the Shapiro delay are
depicted in Fig. 5. The mass function and range of companion mass
values suggest that the companion star is likely to be an He-type
white dwarf (WD).

The second Shapiro delay parameter, the orthometric ratio (ς ),
is not yet precise enough to determine astrophysically meaningful
values for mc, mp and sin i. We can, nevertheless, make an estimate
of mp if we assume that the Tauris & Savonije (1999) relation be-
tween mc and Pb applies, as it does for all known MSP/He-type
WD systems with precisely measured masses (see e.g. fig. 2 of van
Kerkwijk et al. 2005). For the orbital period of PSR J2043+1711,
we derive 0.20 < mc < 0.22 M�, which is very close to the best
value derived from the Shapiro delay measurements as can be seen
from Fig. 5. In this case, the existing constraints imply 1.7 < mp <

2.0 M� and i = 81.3 ± 1.0 degrees (that is, a nearly edge-on con-
figuration). Thus, the mass of this pulsar appears to be located
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Figure 4. Arrival time residuals for the 0.3 GHz Arecibo TOAs of PSR
J2043+1711, as a function of orbital phase. The timing residuals were
binned in phase, with 20 bins per orbit. TOA uncertainties were taken into
account when binning the timing residuals. Bottom: residuals obtained with
the full timing model listed in Table 1. Top: residuals for best-fitting orbital
model that does not take into account the Shapiro delay. The dashed line
shows the theoretical prediction for the detectable part of the Shapiro delay
(which is not absorbed by the fitting of the Keplerian parameters x and e)
given by equation (19) in Freire & Wex (2010) and the h3 and ς parameters
in Table 1.

between the masses of PSR J1903+0327 (Freire et al. 2011b) and
PSR J1614−2230 (Demorest et al. 2010), which define the high
end of the MSP mass distribution.

3.3 Constraints on the distance and the moment of inertia

With the current set of TOAs, we were able to measure the pulsar’s
proper motion, finding μαcos (δ) = −7 ± 1 mas yr−1 and μδ =
−11 ± 2 mas yr−1, corresponding to a total proper motion of μT =
13 ± 2 mas yr−1. For a distance of 1.8 kpc, this gives a transverse
velocity VT ∼ 110 km s−1, a value that is relatively typical among
Galactic disc MSPs (see e.g. Hobbs et al. 2005).

This transverse motion induces a constantly changing Doppler
shift first noted by Shklovskii (1970), which makes the apparent Ṗ

value greater than the intrinsic one by Ṗs ∼ 2.43×10−21 s−1 Pdμ2
T,

where P is the rotational period and d is the distance. The NE2001
model of Galactic free electron density distribution places the pulsar
at 1.8 ± 0.4 kpc (Cordes & Lazio 2002). For this distance and proper
motion, Ṗs is found to represent ∼30 per cent of the measured
(apparent) Ṗ value. The Shklovskii-corrected period derivative Ṗcorr

and the derived pulsar properties are listed in Table 1.
An upper limit on the distance can be derived by assuming that

the Shklovskii effect accounts for all of the apparent Ṗ and that
the currently measured proper motion is correct. Doing so, we find
dmax = 5.7 kpc (see Fig. 6). It is clear, however, that the pulsar must

Figure 5. Constraints on some physical parameters (companion mass mc, pulsar mass mp and orbital inclination i) of the PSR J2043+1711 binary system.
The purple curves enclose regions consistent with the nominal values and 1σ uncertainties of the Shapiro delay parameters h3 (solid) and ς (dashed). Left:
mc–cos i plot. The grey region is excluded by the condition mp > 0. The black solid curve is a contour level of the 2D probability density function (PDF) that
encloses 68.3 per cent of the total probability. Right: mc–mp plot. The grey region is excluded by the condition sin i ≤ 1. The black solid curve encloses 68.3
per cent of the total probability in this region of the plane, and is not a translation of the black contour curve in the left-hand plot. Top, right marginal plots: the
solid black lines show the 1D probability distribution functions for cos i, mp and mc. For all plots, the red contours represent sections of the same 2D PDF for
which 0.20 < mc < 0.22 M� according to the Tauris & Savonije (1999) model based on the orbital period measured for PSR J2043+1711.
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Figure 6. Upper limits on the distance as a function of the moment of inertia,
imposed by the measured gamma-ray energy flux, a 100 per cent upper limit
for the gamma-ray efficiency and different values for f , including best-
fitting values obtained from radio and gamma-ray light-curve modelling
(see Section 3.1 and Table 2). Normally I is assumed to be 1045 g cm2; this
would imply a maximum possible distance of about 1.8 kpc for f  = 1. If
the distance is measured precisely, these limiting curves can be reinterpreted
as lower limits on the moment of inertia. At the maximum possible distance
dmax (to be refined as the measurement of the proper motion improves), the
whole observed Ṗobs would be due to kinematic effects, implying Ṗcorr = 0.
Therefore, for the energy loss of the pulsar Ė = 4π2I Ṗcorr/P

3 to account
for the gamma-ray luminosity, I would have to be infinite.

be at a distance from the Solar system that is significantly smaller
than dmax. The reason for this has already been briefly mentioned
in Section 2.4, namely the very high implied gamma-ray efficiency:
for distances larger than 1.8 kpc, an efficiency larger than 100 per
cent is required to produce the gamma-ray flux detected by the LAT.

We can derive more realistic upper limits for d based on our
Fermi LAT measurement of the energy density G and imposing the
condition η < 1. A comparison of the expressions for Ė and Lγ then
yields the following inequality:

I >
Gfd2P 3

πṖcorr(d, μT)
. (2)

For the current assumptions of I = 1045 g cm2 and f  = 1, this
inequality only holds for distances smaller than 1.8 kpc (Fig. 6). For
the best-fitting f  factors obtained from the modelling of radio and
gamma-ray light curves of PSR J2043+1711 with the TPC and OG
models and with the hollow-cone beam radio model, the inequality
holds for d < 1.92 and 1.83 kpc, respectively. The larger distances
within these ranges are comparable to the distance predicted by the
NE2001 model.

Improved radio timing of this pulsar might eventually allow a
precise measurement of the timing parallax, and therefore of the
distance d, which according to equation (2) provides a direct lower
limit for I. Again, such limits are displayed in Fig. 6. As was
mentioned in Section 2.4, the NE2001 model likely overestimates
the distance. However, it is clear that if the model is correct or the
pulsar is farther away, then its moment of inertia must be large.
A high lower limit on the moment of inertia would help constrain
equations of state (EoSs) for superdense matter (Worley, Krastev &
Li 2008), especially if combined with a precise measurement for
the mass of the pulsar, another likely consequence of the improved
timing.

4 C O N C L U S I O N A N D P RO S P E C T S

We have reported the discovery of an MSP with the NRT at the
position of an unassociated Fermi source, PSR J2043+1711. The
pulsar is the third MSP to be discovered at Nançay in a Fermi source,
after PSR J2017+0603 and PSR J2302+4442 (Cognard et al. 2011).
The radio pulsar is found to be responsible for the gamma-ray
emission observed by Fermi, and its properties (rotational period,
spin-down luminosity, distance, gamma-ray light curve and gamma-
ray spectrum) are relatively common among known gamma-ray
MSPs.

Of the pulsars discovered in Fermi unassociated sources that
have been published to date (Cognard et al. 2011; Keith et al. 2011;
Ransom et al. 2011), PSR J2043+1711 and PSR J2017+0603 are
the two systems with the best timing precision. This happens be-
cause they have very sharp features in their pulse profiles. Both
objects are relatively faint, but they are well within the region of the
sky detectable by the Arecibo 305-m telescope, which greatly com-
pensates for the small flux density. Furthermore, both pulsars appear
to be members of very stable MSP– WD binaries. For this reason,
they have been included in the pulsar timing array (PTA), which
is now being used in a collective effort to detect low-frequency
gravitational waves (e.g. Hobbs et al. 2010).

Given this high timing precision, continued Arecibo timing might
provide a precise distance measurement which, given the observed
gamma-ray energy flux, would provide a lower limit for the moment
of inertia of this MSP. This distance is likely to be significantly
smaller than the estimate provided by the NE2001 electron model
of the Galaxy, in which case the parallax should be easier to measure
but the lower limit on I would not be constraining. If the distance
is comparable to the DM prediction or larger, then the parallax will
be more difficult to measure, but a low upper limit for the parallax
would allow us to derive a high lower limit for the moment of inertia.
This might constrain the EoS of neutron matter at densities above
that of the atomic nucleus – some predict I < 1.7 × 1045 g cm2

(Worley et al. 2008); measuring a larger lower limit for I would
exclude such EoSs.

Continued timing of PSR J2043+1711 will also improve the
measurement of the Shapiro delay, providing precise estimates of
the masses of the components of the system. Combining this precise
mass with a lower limit on the moment of inertia could provide a
stringent constraint of the EoS.
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A P P E N D I X A : R A D I O SE A R C H
O B S E RVAT I O N S W I T H T H E NA N ÇAY R A D I O
TELESCOPE

To avoid redundant observations with other instruments, and to
inform the community of existing data samples, Table A1 lists
all pulsar searches of Fermi error ellipses made with the NRT to
date.

For each observation, Table A1 lists the observation time Tobs,
the sky temperature in the corresponding direction Tsky and the min-
imum detectable flux density Smin. The sky temperature Tsky corre-
sponds to the contribution from the Galactic synchrotron compo-
nent, calculated by scaling the 408-MHz map of Haslam et al. (1982)
to the observing frequency of 1.4 GHz with a spectral index of −2.6.
The quantity Smin was estimated using the modified radiometer
equation (see e.g. Lorimer & Kramer 2005), with G = 1.4 K Jy−1,
np = 2, β = 1.05, Tsys = T rec + Tsky, with T rec = 35 K (note
that this receiver temperature includes the 2.7 K temperature from
the cosmic microwave background), �f = 128 MHz, and assuming
(S/N)min = 5, and W = 0.1 × P. Also listed in the table are telescope
pointing directions and the offsets from the corresponding 2FGL
sources.

For each source, Table A1 gives the semimajor axis of the
95 per cent confidence ellipse (θ95), the curvature significance
(‘Signif_Curve’), the variability index (‘Variability_Index’) and the
name of the identified or likely associated source (‘Assoc.’), if any.
Details on the determination of these parameters and on the source
association procedure can be found in Abdo et al. (2012).

Of the sources observed with the NRT and for which no radio
pulsations have been observed to date, the following have curva-
ture significances above 4σ and variability indices smaller than
41.6, making them good pulsar candidates: 2FGL J0224.0+6204,
J0734.6−1558, J1120.0−2204, J1311.7−3429, J1625.2−0020 and
J2339.6−0532. With the exception of 2FGL J0734.6−1558, in
which a gamma-ray pulsar has been discovered through blind
searches of the Fermi LAT data (Saz Parkinson 2011), these sources
remain unassociated. Multiwavelength studies might help in de-
termining their natures. Optical and X-ray observations of 2FGL
J2339.6−0532 showed that it is likely to be powered by an MSP
in a black-widow system (Romani & Shaw 2011; Kong et al.
2012).
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